×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.05492v4 Announce Type: replace
Abstract: In this article, we compute the two observables, impulse and waveform, in a black hole scattering event for the Scalar-Tensor theory of gravity with a generic scalar potential using the techniques of Worldline Quantum Field Theory. We mainly investigate the corrections to the above mentioned observables due to the extra scalar degree of freedom. For the computation of impulse, we consider the most general scenario by making the scalar field massive and then show that each computed diagram has a smooth massless limit. We compute the waveform for scalar and graviton up to 2PM, taking the scalar as massless. Furthermore, we discuss if the scalar has mass and how the radiation integrals get more involved than the massless case. We also arrive at some analytical results using stationary phase approximation.

Click here to read this post out
ID: 813107; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: