×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11886v1 Announce Type: new
Abstract: We formulate a novel approach to solve a class of stochastic problems, referred to as data-consistent inverse (DCI) problems, which involve the characterization of a probability measure on the parameters of a computational model whose subsequent push-forward matches an observed probability measure on specified quantities of interest (QoI) typically associated with the outputs from the computational model. Whereas prior DCI solution methodologies focused on either constructing non-parametric estimates of the densities or the probabilities of events associated with the pre-image of the QoI map, we develop and analyze a constrained quadratic optimization approach based on estimating push-forward measures using weighted empirical distribution functions. The method proposed here is more suitable for low-data regimes or high-dimensional problems than the density-based method, as well as for problems where the probability measure does not admit a density. Numerical examples are included to demonstrate the performance of the method and to compare with the density-based approach where applicable.

Click here to read this post out
ID: 813168; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: