×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11935v1 Announce Type: new
Abstract: The mean curvature flow describes the evolution of a surface(a curve) with normal velocity proportional to the local mean curvature. It has many applications in mathematics, science and engineering. In this paper, we develop a numerical method for mean curvature flows by using the Onsager principle as an approximation tool. We first show that the mean curvature flow can be derived naturally from the Onsager variational principle. Then we consider a piecewisely linear approximation of the curve and derive a discrete geometric flow. The discrete flow is described by a system of ordinary differential equations for the nodes of the discrete curve. We prove that the discrete system preserve the energy dissipation structure in the framework of the Onsager principle and this implies the energy decreasing property. The ODE system can be solved by an improved Euler scheme and this leads to an efficient fully discrete scheme. We first consider the method for a simple mean curvature flow and then extend it to volume preserving mean curvature flow and also a wetting problem on substrates. Numerical examples show that the method has optimal convergence rate and works well for all the three problems.

Click here to read this post out
ID: 813176; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: