×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11967v1 Announce Type: new
Abstract: This paper focuses on multi-agent stochastic differential games for jump-diffusion systems. On one hand, we study the multi-agent game for optimal investment in a jump-diffusion market. We derive constant Nash equilibria and provide sufficient conditions for their existence and uniqueness for exponential, power, and logarithmic utilities, respectively. On the other hand, we introduce a computational framework based on the actor-critic method in deep reinforcement learning to solve the stochastic control problem with jumps. We extend this algorithm to address the multi-agent game with jumps and utilize parallel computing to enhance computational efficiency. We present numerical examples of the Merton problem with jumps, linear quadratic regulators, and the optimal investment game under various settings to demonstrate the accuracy, efficiency, and robustness of the proposed method. In particular, neural network solutions numerically converge to the derived constant Nash equilibrium for the multi-agent game.

Click here to read this post out
ID: 813179; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: