×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12087v1 Announce Type: new
Abstract: This is a preleminary work. Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many reversible overdamped Langevin dynamics which preserve the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.

Click here to read this post out
ID: 813204; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: