×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12198v1 Announce Type: new
Abstract: The availability of cancer measurements over time enables the personalised assessment of tumour growth and therapeutic response dynamics. However, many tumours are treated after diagnosis without collecting longitudinal data, and cancer monitoring protocols may include infrequent measurements. To facilitate the estimation of disease dynamics and better guide ensuing clinical decisions, we investigate an inverse problem enabling the reconstruction of earlier tumour states by using a single spatial tumour dataset and a biomathematical model describing disease dynamics. We focus on prostate cancer, since aggressive cases of this disease are usually treated after diagnosis. We describe tumour dynamics with a phase-field model driven by a generic nutrient ruled by reaction-diffusion dynamics. The model is completed with another reaction-diffusion equation for the local production of prostate-specific antigen, which is a key prostate cancer biomarker. We first improve previous well-posedness results by further showing that the solution operator is continuously Fr\'echet differentiable. We then analyse the backward inverse problem concerning the reconstruction of earlier tumour states starting from measurements of the model variables at the final time. Since this problem is severely ill-posed, only very weak conditional stability of logarithmic type can be recovered from the terminal data. However, by restricting the unknowns to a compact subset of a finite-dimensional subspace, we can derive an optimal Lipschitz stability estimate.

Click here to read this post out
ID: 813228; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: