×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.03035v2 Announce Type: replace
Abstract: High-order tensor methods that employ Taylor-based local models (of degree $p\ge 3$) within adaptive regularization frameworks have been recently proposed for both convex and nonconvex optimization problems. They have been shown to have superior, and even optimal, worst-case global convergence rates and local rates compared to Newton's method. Finding rigorous and efficient techniques for minimizing the Taylor polynomial sub-problems remains a challenging aspect for these algorithms. Ahmadi et al. recently introduced a tensor method based on sum-of-squares (SoS) reformulations, so that each Taylor polynomial sub-problem in their approach can be tractably minimized using semidefinite programming (SDP); however, the global convergence and complexity of their method have not been addressed for general nonconvex problems. This paper introduces an algorithmic framework that combines the Sum of Squares (SoS) Taylor model with adaptive regularization techniques for nonconvex smooth optimization problems. Each iteration minimizes an SoS Taylor model, offering a polynomial cost per iteration. For general nonconvex functions, the worst-case evaluation complexity bound is $\mathcal{O}(\epsilon^{-2})$, while for strongly convex functions, an improved evaluation complexity bound of $\mathcal{O}(\epsilon^{-\frac{1}{p}})$ is established. To the best of our knowledge, this is the first global rate analysis for an adaptive regularization algorithm with a tractable high-order sub-problem in nonconvex smooth optimization, opening the way for further improvements.

Click here to read this post out
ID: 813393; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: