×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11696v1 Announce Type: new
Abstract: Over the past three decades, it has been shown that discrete and continuous media can support topologically nontrivial modes. Recently, it was shown that the same is true of the vacuum, namely, right (R) and left (L) circularly polarized photons are topologically nontrivial. Here, we study the topology of another class of massless particles, namely the gravitons. Working in the transverse-traceless gauge and the limit of weak gravity, we show that the collection of all gravitons forms a rank-two vector bundle over the lightcone. We prove the graviton bundle is topologically trivial, allowing us to discover a globally smooth basis for gravitons. It has often been assumed that there exists such a global basis consisting of linear polarized gravitons. We prove that this stronger assumption is false--the graviton bundle has no linearly polarized subbundles. While the total graviton bundle can be decomposed into trivial line bundles, it also breaks apart into two nontrivial $\mathrm{SO}(3)$ invariant subbundles, consisting of the R and L gravitons. Unlike the bundles in the trivial decomposition, the R and L gravitons are in fact irreducible bundle representations of the Poincar\'{e} group, and are thus elementary particles. The nontrivial topologies of the R and L gravitons are fully characterized by the Chern numbers $\mp 4$. These topologies differ from those of the R and L photons, which are characterized by the Chern numbers $\mp 2$. This nontrivial topology obstructs the splitting of graviton angular momentum into spin and orbital angular momentum.

Click here to read this post out
ID: 813426; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: