×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2207.14282v5 Announce Type: replace-cross
Abstract: We give systematic ways of defining monotone quantum relative entropies and (multi-variate) quantum R\'enyi divergences starting from a set of monotone quantum relative entropies.
Despite its central importance in information theory, only two additive and monotone quantum extensions of the classical relative entropy have been known so far, the Umegaki and the Belavkin-Staszewski relative entropies. Here we give a general procedure to construct monotone and additive quantum relative entropies from a given one with the same properties; in particular, when starting from the Umegaki relative entropy, this gives a new one-parameter family of monotone and additive quantum relative entropies interpolating between the Umegaki and the Belavkin-Staszewski ones on full-rank states.
In a different direction, we use a generalization of a classical variational formula to define multi-variate quantum R\'enyi quantities corresponding to any finite set of quantum relative entropies $(D^{q_x})_{x\in X}$ and signed probability measure $P$, as $$ Q_P^{\mathrm{b},\mathbf{q}}((\rho_x)_{x\in X}):=\sup_{\tau\ge 0}\left\{\text{Tr}\,\tau-\sum_xP(x)D^{q_x}(\tau\|\rho_x)\right\}. $$ We show that monotone quantum relative entropies define monotone R\'enyi quantities whenever $P$ is a probability measure. With the proper normalization, the negative logarithm of the above quantity gives a quantum extension of the classical R\'enyi $\alpha$-divergence in the 2-variable case ($X=\{0,1\}$, $P(0)=\alpha$). We show that if both $D^{q_0}$ and $D^{q_1}$ are monotone and additive quantum relative entropies, and at least one of them is strictly larger than the Umegaki relative entropy then the resulting barycentric R\'enyi divergences are strictly between the log-Euclidean and the maximal R\'enyi divergences, and hence they are different from any previously studied quantum R\'enyi divergence.

Click here to read this post out
ID: 813446; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: