×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11617v1 Announce Type: new
Abstract: Non-Hermitian optics has revealed a series of counterintuitive phenomena with profound implications for sensing, lasing, and light manipulation. While the non-Hermiticity of Hamitonians is well-recognized, recent advancements in non-Hermitian physics have broadened to include scattering matrices, uncovering phenomena such as simultaneous lasing and coherent perfect absorption (CPA), reflectionless scattering modes (RSMs), and coherent chaos control. Despite these developments, the investigation has predominantly focused on static and symmetric configurations, leaving the dynamic properties of non-Hermitian scattering in detuned systems largely unexplored. Bridging this gap, we extend certain stationary non-Hermitian scattering phenomena to detuned systems. We delve into the interplay between bi-directional RSMs and RSM exceptional points (EPs), and elucidate the global existence conditions for RSMs under detuning. Moreover, we introduces a novel category of EPs, characterized by the coalescence of transmission peaks, emerging independent with the presence of Hamiltonian EPs. The transmission EPs (TEPs) exhibit flat-top lineshape and can be extended to a square-shaped spectrum when detuning is involved, accompanied by a distinctive phase transition. Significantly, we demonstrate the applications of the TEPs in a one-dimensional coupled cavity system, engineered to enhance sensing robustness against environmental instabilities such as laser frequency drifts, which can exceed 10 MHz. This capability represents a substantial improvement over traditional sensing methods and an important improvement of fragile EP sensors. Our findings not only contribute to the broader understanding of non-Hermitian scattering phenomena but also paves the way for future advancements in non-Hermitian sensing technologies.

Click here to read this post out
ID: 813477; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: