×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12092v1 Announce Type: new
Abstract: The ultrafast relaxation dynamics of tetracene following UV excitation to a bright singlet state S6 has been studied with time-resolved photoelectron spectroscopy. With the help of high-level ab-initio multireference perturbation theory calculations, we assign photoelectron signals to intermediate dark electronic states S3, S4 and S5 as well as a to a low-lying electronic state S2. The energetic structure of these dark states has not been determined experimentally previously. The time-dependent photoelectron yields assigned to the states S6, S5 and S4 have been analyzed and reveal the depopulation of S6 within 50 fs, while S5 and S4 are populated with delays of about 50 and 80 fs. The dynamics of the lower-lying states S3 and S2 seem to agree with a delayed population coinciding with the depopulation of the higher-lying states S4-S6, but could not be elucidated in full detail due to the low signal levels of the corresponding two-photon ionization probe processes.

Click here to read this post out
ID: 813509; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: