×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12105v1 Announce Type: new
Abstract: Understanding plasma turbulence requires a synthesis of experiments, observations, theory, and simulations. In the case of kinetic plasmas such as the solar wind, the lack of collisions renders the fluid closures such as viscosity meaningless and one needs to resort to higher order fluid models or kinetic models. Typically, the computational expense in such models is managed by simulating artificial values of certain parameters such as the ratio of the Alfv\'en speed to the speed of light ($v_A/c$) or the relative mass ratio of ions and electrons ($m_i/m_e$). Although, typically care is taken to use values as close as possible to realistic values within the computational constraints, these artificial values could potentially introduce unphysical effects. These unphysical effects could be significant at sub-ion scales, where kinetic effects are the most important. In this paper, we use the ten-moment fluid model in the Gkeyll framework to perform controlled numerical experiments, systematically varying the ion-electron mass ratio from a small value down to the realistic proton-electron mass ratio. We show that the unphysical mass ratio has a significant effect on the kinetic range dynamics as well as the heating of both the plasma species. The dissipative process for both ions and electrons become more compressive in nature, although the ions remain nearly incompressible in all cases. The electrons move from being dominated by incompressive viscous like heating/dissipation, to very compressive heating/dissipation dominated by compressions/rarefactions. While the heating change is significant for the electrons, a mass ratio of $m_i/m_e \sim 250$ captures the asymptotic behaviour of electron heating.

Click here to read this post out
ID: 813510; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: