×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12153v1 Announce Type: new
Abstract: The widespread application of nanomaterials in polymerase chain reaction (PCR) technology has opened new avenues for improving detection methods in the biomedical field. Recent experiments (Chem. Eur. J. 2023, e202203513) have revealed oscillatory behavior between PCR efficiency and the concentration of gold nanoparticles in the pM range, potentially linked to the long-range Coulomb interactions among charged colloidal particles and the quantum size effect of nanoparticle electronic states. Through Monte Carlo simulation, we discovered that the radial distribution function of gold nanoparticles in solution gradually exhibits peak characteristics with increasing charge, triggering coherent photon behavior in Rayleigh scattering within the solution, thereby influencing the efficiency of reusing released photons in the PCR chain reaction. The study demonstrates that the oscillation period aligns with the wavelength of downstream reaction photons, while their energy matches the width of energy levels near the Fermi level of gold nanoparticles. The latter can absorb and store electron states internally, promoting upstream PCR reactions through subsequent re-release, and compensating for energy deficiencies through the Boltzmann distribution of electrons. This work is poised to advance the application of PCR-specific precise detection methods in the field of quantum biotechnology.

Click here to read this post out
ID: 813514; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: