×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12176v1 Announce Type: new
Abstract: Dual-comb spectroscopy (DCS) with few-GHz tooth spacing that provides the optimal trade-off between spectral resolution and refresh rate is a powerful tool for measuring and analyzing rapidly evolving transient events. Despite such an exciting opportunity, existing technologies compromise either the spectral resolution or refresh rate, leaving few-GHz DCS with robust design largely unmet for frontier applications. In this work, we demonstrate a novel GHz DCS by exploring the multimode interference-mediated spectral filtering effect in an all-fiber ultrashort cavity configuration. The GHz single-cavity all-fiber dual-comb source is seeded by a dual-wavelength mode-locked fiber laser operating at fundamental repetition rates of about 1.0 GHz differing by 148 kHz, which has an excellent stability in the free-running state that the Allan deviation is only 101.7 mHz for an average time of 1 second. Thanks to the large repetition rate difference between the asynchronous dichromatic pulse trains, the GHz DCS enables a refresh time as short as 6.75 us, making it promising for studying nonrepeatable transient phenomena in real time. To this end, the practicality of the present GHz DCS is validated by successfully capturing the 'shock waves' of balloon and firecracker explosions outdoors. This GHz single-cavity all-fiber dual-comb system promises a noteworthy improvement in acquisition speed and reliability without sacrificing measurement accuracy, anticipated as a practical tool for high-speed applications.

Click here to read this post out
ID: 813517; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: