×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11750v1 Announce Type: cross
Abstract: Recently, man-made dielectric materials composed of finite-sized dielectric constituents have emerged as a promising platform for quasi-bound states in the continuum (QBICs). These states allow for an extraordinary confinement of light within regions smaller than the wavelength scale. Known for their exceptional quality factors, they have become crucial assets across a diverse array of applications. Given the circumstances, there is a compelling drive to find meta-designs that can possess multiple QBICs. Here, we demonstrate the existence of two different types of QBICs in silicon-based metasurfaces: accidental QBIC and symmetry-protected QBIC. The accidental QBIC evinces notable resilience to variations in geometrical parameters and symmetry, underscoring its capacity to adeptly navigate manufacturing tolerances while consistently upholding a distinguished quality factor of $10^5$. Conversely, the symmetry-protected QBIC inherently correlates with the disruption of unit cell symmetry. As a result, a phase delay yields an efficient channel for substantial energy transference to the continuum, endowing this variant with an exceedingly high quality factor, approaching $10^8$. Moreover, the manifestation of these QBICs stems from the intricate interplay among out-of-plane electric and magnetic dipoles, alongside in-plane quadrupoles exhibiting odd parities.

Click here to read this post out
ID: 813535; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: