×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12212v1 Announce Type: cross
Abstract: Amino acids are essential for the synthesis of protein. Amino acids contain both amine (R$-$NH$_{2}$) and carboxylic acid (R$-$COOH) functional groups, which help to understand the possible formation mechanism of life in the universe. Among the 20 types of amino acids, glycine (NH$_{2}$CH$_{2}$COOH) is known as the simplest non-essential amino acid. In the last 40 years, all surveys of NH$_{2}$CH$_{2}$COOH in the interstellar medium, especially in the star-formation regions, have failed at the millimeter and sub-millimeter wavelengths. We aimed to identify the possible precursors of NH$_{2}$CH$_{2}$COOH, because it is highly challenging to identify NH$_{2}$CH$_{2}$COOH in the interstellar medium. Many laboratory experiments have suggested that methylenimine (CH$_{2}$NH) plays a key role as a possible precursor of NH$_{2}$CH$_{2}$COOH in the star-formation regions via the Strecker synthesis reaction. After spectral analysis using the local thermodynamic equilibrium (LTE) model, we successfully identified the rotational emission lines of CH$_{2}$NH towards the hot molecular core G10.47+0.03 using the Atacama Compact Array (ACA). The estimated column density of CH$_{2}$NH towards G10.47+0.03 is (3.40$\pm$0.2)$\times$10$^{15}$ cm$^{-2}$ with a rotational temperature of 218.70$\pm$20 K, which is estimated from the rotational diagram. The fractional abundance of CH$_{2}$NH with respect to H$_{2}$ towards G10.47+0.03 is 2.61$\times$10$^{-8}$. We found that the derived abundance of CH$_{2}$NH agree fairly well with the existing two-phase warm-up chemical modelling abundance value of CH$_{2}$NH. We discuss the possible formation pathways of CH$_{2}$NH within the context of hot molecular cores, and we find that CH$_{2}$NH is likely mainly formed via neutral-neutral gas-phase reactions of CH$_{3}$ and NH radicals towards G10.47+0.03.

Click here to read this post out
ID: 813545; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: