×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12348v1 Announce Type: cross
Abstract: Detection of radio emission from Jupiter was identified quickly as being due to its planetary-scale magnetic field. Subsequent spacecraft investigations have revealed that many of the planets, and even some moons, either have or have had large-scale magnetic fields. In the case of the Earth, Jupiter, Saturn, Uranus, and Neptune, the their magnetic fields are generated by dynamo processes within these planets, and an interaction between the solar wind and their magnetic fields generates intense radio emission via the electron cyclotron maser instability. In the case of Jupiter, its magnetic field interacts with the moon Io to result in radio emission as well.
Extrasolar planets reasonably may be expected to generate large-scale magnetic fields and to sustain an electron cyclotron maser instability. Not only may these radio emissions be a means for discovering extrasolar planets, because magnetic fields are tied to the properties of planetary interiors, radio emissions may be a remote sensing means of constraining extrasolar planetary properties that will be otherwise difficult to access. In the case of terrestrial planets, the presence or absence of a magnetic field may be an indicator for habitability. Since the first edition of the Handbook, there have been a number of advances, albeit there remain no unambigous detection of radio emission from extrasolar planets. New ground-based telescopes and new possibilities for space-based telescopes provide promise for the future.

Click here to read this post out
ID: 813547; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: