×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12361v1 Announce Type: cross
Abstract: Deep learning methods for accelerated MRI achieve state-of-the-art results but largely ignore additional speedups possible with noncartesian sampling trajectories. To address this gap, we created a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI. This model uses conditioning during training as well as frequency-based guidance to ensure consistency between images and measurements. Evaluated on retrospective data, we show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image). We use this algorithm to identify a set of optimal variable-density spiral trajectories and show large improvements in image quality compared to conventional reconstruction using the non-uniform fast Fourier transform. By combining efficient spiral sampling trajectories, multicoil imaging, and deep learning reconstruction, these methods could enable the extremely high acceleration factors needed for real-time 3D imaging.

Click here to read this post out
ID: 813549; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: