×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.04677v2 Announce Type: replace
Abstract: RNA in extant biological systems is homochiral; it consists exclusively of D-ribonucleotides rather than L-ribonucleotides. How the homochirality of RNA emerged is not known. Here, we use stochastic simulations to quantitatively explore the conditions for RNA homochirality to emerge in the prebiotic scenario of an RNA reactor, in which RNA strands react in a non-equilibrium environment. These reactions include the hybridization, dehybridization, template-directed ligation, and cleavage of RNA strands. The RNA reactor is either closed, with a finite pool of ribonucleotide monomers of both chiralities (D and L), or the reactor is open, with a constant inflow of a racemic mixture of monomers. For the closed reactor, we also consider the interconversion between D and L monomers via a racemization reaction. We first show that template-free polymerization is unable to reach a high degree of homochirality, due to the lack of autocatalytic amplification. In contrast, in the presence of template-directed ligation, with base pairing and stacking between bases of the same chirality thermodynamically favored, a high degree of homochirality can arise and be maintained, provided the non equilibrium environment overcomes product inhibition, for instance via temperature cycling. Furthermore, if the experimentally observed kinetic stalling of ligation after chiral mismatches is also incorporated, the RNA reactor can evolve towards a fully homochiral state, in which one chirality is entirely lost. This is possible because the kinetic stalling after chiral mismatches effectively implements a chiral cross-inhibition process. Taken together, our model supports a scenario where the emergence of homochirality is assisted by template-directed ligation and polymerization in a non equilibrium RNA reactor.

Click here to read this post out
ID: 813555; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: