×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.07673v2 Announce Type: replace
Abstract: Objective: In cochlear implant users with residual acoustic hearing, compound action potentials (CAPs) can be evoked by acoustic (aCAP) or electric (eCAP) stimulation and recorded through the electrodes of the implant. We propose a novel computational model to simulate aCAPs and eCAPs in humans, considering the interaction between combined electric-acoustic stimulation that occurs in the auditory nerve. Methods: The model consists of three components: a 3D finite element method model of an implanted cochlea, a phenomenological single-neuron spiking model for electric-acoustic stimulation, and a physiological multi-compartment neuron model to simulate the individual nerve fiber contributions to the CAP. Results: The CAP morphologies closely resembled those known from humans. The spread of excitation derived from eCAPs by varying the recording electrode along the cochlear implant electrode array was consistent with published human data. The predicted CAP amplitude growth functions largely resembled human data, with deviations in absolute CAP amplitudes for acoustic stimulation. The model reproduced the suppression of eCAPs by simultaneously presented acoustic tone bursts for different masker frequencies and probe stimulation electrodes. Conclusion: The proposed model can simulate CAP responses to electric, acoustic, or combined electric-acoustic stimulation. It considers the dependence on stimulation and recording sites in the cochlea, as well as the interaction between electric and acoustic stimulation in the auditory nerve. Significance: The model enhances comprehension of CAPs and peripheral electric-acoustic interaction. It can be used in the future to investigate objective methods, such as hearing threshold assessment or estimation of neural health through aCAPs or eCAPs.

Click here to read this post out
ID: 813557; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: