×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11761v1 Announce Type: new
Abstract: Stem cell regeneration is a vital biological process in self-renewing tissues, governing development and tissue homeostasis. Gene regulatory network dynamics are pivotal in controlling stem cell regeneration and cell type transitions. However, integrating the quantitative dynamics of gene regulatory networks at the single-cell level with stem cell regeneration at the population level poses significant challenges. This study presents a computational framework connecting gene regulatory network dynamics with stem cell regeneration through a data-driven formulation of the inheritance function. The inheritance function captures epigenetic state transitions during cell division in heterogeneous stem cell populations. Our scheme allows the derivation of the inheritance function based on a hybrid model of cross-cell-cycle gene regulation network dynamics. The proposed scheme enables us to derive the inheritance function based on the hybrid model of cross-cell-cycle gene regulation network dynamics. By explicitly incorporating gene regulatory network structure, it replicates cross-cell-cycling gene regulation dynamics through individual-cell-based modeling. The numerical scheme holds the potential for extension to diverse gene regulatory networks, facilitating a deeper understanding of the connection between gene regulation dynamics and stem cell regeneration.

Click here to read this post out
ID: 813578; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: