×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.07211v4 Announce Type: replace
Abstract: In this work, we present a novel machine learning approach for pricing high-dimensional American options based on the modified Gaussian process regression (GPR). We incorporate deep kernel learning and sparse variational Gaussian processes to address the challenges traditionally associated with GPR. These challenges include its diminished reliability in high-dimensional scenarios and the excessive computational costs associated with processing extensive numbers of simulated paths Our findings indicate that the proposed method surpasses the performance of the least squares Monte Carlo method in high-dimensional scenarios, particularly when the underlying assets are modeled by Merton's jump diffusion model. Moreover, our approach does not exhibit a significant increase in computational time as the number of dimensions grows. Consequently, this method emerges as a potential tool for alleviating the challenges posed by the curse of dimensionality.

Click here to read this post out
ID: 813600; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: