×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11850v1 Announce Type: new
Abstract: Characterization of quantum states is a fundamental requirement in quantum science and technology. As a promising framework, shadow tomography shows significant efficiency in estimating linear functions, however, for the challenging nonlinear ones, it requires measurements at an exponential cost. Here, we implement an advanced shadow protocol, so-called hybrid shadow~(HS) tomography, to reduce the measurement cost in the estimation of nonlinear functions in an optical system. We design and realize a deterministic quantum Fredkin gate with single photon, achieving high process fidelity of $0.935\pm0.001$. Utilizing this novel Fredkin gate, we demonstrate HS in the estimations, like the higher-order moments up to 4, and reveal that the sample complexity of HS is significantly reduced compared with the original shadow protocol. Furthermore, we utilize these higher-degree functions to implement virtual distillation, which effectively extracts a high-purity quantum state from two noisy copies. The virtual distillation is also verified in a proof-of-principle demonstration of quantum metrology, further enhancing the accuracy of parameter estimation. Our results suggest that HS is efficient in state characterization and promising for quantum technologies.

Click here to read this post out
ID: 813606; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: