×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11985v1 Announce Type: new
Abstract: Observational entropy - a quantity that unifies Boltzmann's entropy, Gibbs' entropy, von Neumann's macroscopic entropy, and the diagonal entropy - has recently been argued to play a key role in a modern formulation of statistical mechanics. Here, relying on algebraic techniques taken from Petz's theory of statistical sufficiency and on a Levy-type concentration bound, we prove rigorous theorems showing how the observational entropy of a system undergoing a unitary evolution chosen at random tends to increase with overwhelming probability and to reach its maximum very quickly. More precisely, we show that for any observation that is sufficiently coarse with respect to the size of the system, regardless of the initial state of the system (be it pure or mixed), random evolution renders its state practically indistinguishable from the microcanonical distribution with a probability approaching one as the size of the system grows. The same conclusion holds not only for random evolutions sampled according to the unitarily invariant Haar distribution, but also for approximate 2-designs, which are thought to provide a more physically reasonable way to model random evolutions.

Click here to read this post out
ID: 813609; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: