×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12337v1 Announce Type: new
Abstract: The quantum geometric tensor has established itself as a general framework for the analysis and detection of equilibrium phase transitions in isolated quantum systems. We propose a novel generalization of the quantum geometric tensor, which offers a universal approach to studying phase transitions in non-Hermitian quantum systems. Our generalization is based on the concept of the generator of adiabatic transformations and can be applied to systems described by either a Liouvillian superoperator or by an effective non-Hermitian Hamiltonian. We illustrate the proposed method by analyzing the non-Hermitian Su-Schrieffer-Heeger model and a generic quasi-free dissipative fermionic system with a quadratic Liouvillian. Our findings reveal that this method effectively identifies phase transitions across all examined models, providing a universal tool for investigating general non-Hermitian systems.

Click here to read this post out
ID: 813621; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: