×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11709v1 Announce Type: cross
Abstract: The Mermin-Peres magic square is a celebrated example of a system of Boolean linear equations that is not (classically) satisfiable but is satisfiable via linear operators on a Hilbert space of dimension four. A natural question is then, for what kind of problems such a phenomenon occurs? Atserias, Kolaitis, and Severini answered this question for all Boolean Constraint Satisfaction Problems (CSPs): For 2-SAT, Horn-SAT, and Dual Horn-SAT, classical satisfiability and operator satisfiability is the same and thus there is no gap; for all other Boolean CSPs, the two notions differ as there is a gap, i.e., there are unsatisfiable instances that are satisfied via operators on a finite-dimensional Hilbert space. We generalize their result to CSPs on arbitrary finite domains: CSPs of so-called bounded-width have no satisfiability gap, whereas all other CSPs have a satisfiability gap.

Click here to read this post out
ID: 813627; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: