×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.14912v2 Announce Type: replace
Abstract: This work uncovers a fundamental connection between doped stabilizer states, a concept from quantum information theory, and the structure of eigenstates in perturbed many-body quantum systems. We prove that for Hamiltonians consisting of a sum of commuting Pauli operators (i.e., stabilizer Hamiltonians) and a perturbation composed of a limited number of arbitrary Pauli terms, the eigenstates can be represented as doped stabilizer states with small stabilizer nullity. This result enables the application of stabilizer techniques to a broad class of many-body systems, even in highly entangled regimes. Building on this, we develop efficient classical algorithms for tasks such as finding low-energy eigenstates, simulating quench dynamics, preparing Gibbs states, and computing entanglement entropies in these systems. Our work opens up new possibilities for understanding the robustness of topological order and the dynamics of many-body systems under perturbations, paving the way for novel insights into the interplay of quantum information, entanglement, and many-body systems.

Click here to read this post out
ID: 813663; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 19, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 17
CC:
No creative common's license
Comments: