×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12431v1 Announce Type: new
Abstract: We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT2019ahk, obtained with the Australia Telescope Compact Array (ATCA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the MeerKAT radio telescopes, spanning 40 to 1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a non-relativistic spherical outflow and a relativistic outflow observed from an arbitrary viewing angle. We find that the non-relativistic solution implies a continuous energy rise in the outflow from $E\sim10^{46}$ erg to $E\sim10^{49}$ erg with $\beta \approx 0.05$, while the off-axis relativistic jet solution instead suggests $E\approx10^{52}$ erg with $\Gamma\sim10$ erg at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced.

Click here to read this post out
ID: 814498; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: