×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2209.15023v3 Announce Type: replace
Abstract: Fractional Chern insulators realize the remarkable physics of the fractional quantum Hall effect (FQHE) in crystalline systems with Chern bands. The lowest Landau level (LLL) is known to host the FQHE, but not all Chern bands are suitable for realizing fractional Chern insulators (FCI). Previous approaches to stabilizing FCIs focused on mimicking the LLL through momentum space criteria. Here instead we take a real-space perspective by introducing the notion of vortexability. Vortexable Chern bands admit a fixed operator that introduces vortices into any band wavefunction while keeping the state entirely within the same band. Vortexable bands admit trial wavefunctions for FCI states, akin to Laughlin states. In the absence of dispersion and for sufficiently short ranged interactions, these FCI states are the ground state -- independent of the distribution of Berry curvature. Vortexable bands are much more general than the LLL, and we showcase a recipe for constructing them. We exhibit diverse examples in graphene-based systems with or without magnetic field, and with any Chern number. A special class of vortexable bands is shown to be equivalent to the momentum space "trace condition" or "ideal band condition". In addition, we also identify a more general form of vortexability that goes beyond this criterion. We introduce a modified measure that quantifies deviations from general vortexability which can be applied to generic Chern bands to identify promising FCI platforms.

Click here to read this post out
ID: 814637; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: