×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12711v1 Announce Type: new
Abstract: Temperature plays a pivotal role in moderating label softness in the realm of knowledge distillation (KD). Traditional approaches often employ a static temperature throughout the KD process, which fails to address the nuanced complexities of samples with varying levels of difficulty and overlooks the distinct capabilities of different teacher-student pairings. This leads to a less-than-ideal transfer of knowledge. To improve the process of knowledge propagation, we proposed Dynamic Temperature Knowledge Distillation (DTKD) which introduces a dynamic, cooperative temperature control for both teacher and student models simultaneously within each training iterafion. In particular, we proposed "\textbf{sharpness}" as a metric to quantify the smoothness of a model's output distribution. By minimizing the sharpness difference between the teacher and the student, we can derive sample-specific temperatures for them respectively. Extensive experiments on CIFAR-100 and ImageNet-2012 demonstrate that DTKD performs comparably to leading KD techniques, with added robustness in Target Class KD and None-target Class KD scenarios.The code is available at https://github.com/JinYu1998/DTKD.

Click here to read this post out
ID: 814816; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: