×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12780v1 Announce Type: new
Abstract: A new simulation technique to obtain the synchronized steady-state solutions existing in coupled oscillator systems is presented. The technique departs from a semi-analytical formulation presented in previous works. It extends the model of the admittance function describing each individual oscillator to a piecewise linear one. This provides a global formulation of the coupled system, considering the whole characteristic of each voltage-controlled oscillator (VCO) in the array. In comparison with the previous local formulation, the new formulation significantly improves the accuracy in the prediction of the system synchronization ranges. The technique has been tested by comparison with computationally demanding circuit-level Harmonic Balance simulations in an array of Van der Pol-type oscillators and then applied to a coupled system of FET based oscillators at 5 GHz, with very good agreement with measurements.

Click here to read this post out
ID: 814858; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: