×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12949v1 Announce Type: cross
Abstract: This paper considers a finite horizon optimal stopping problem for a sequence of independent and identically distributed random variables. The objective is to design stopping rules that attempt to select the random variable with the highest value in the sequence. The performance of any stopping rule may be benchmarked relative to the selection of a "prophet" that has perfect foreknowledge of the largest value. Such comparisons are typically stated in the form of "prophet inequalities." In this paper we characterize sharp prophet inequalities for single threshold stopping rules as solutions to infinite two person zero sum games on the unit square with special payoff kernels. The proposed game theoretic characterization allows one to derive sharp non-asymptotic prophet inequalities for different classes of distributions. This, in turn, gives rise to a simple and computationally tractable algorithmic paradigm for deriving optimal single threshold stopping rules. Our results also indicate that several classical observations in the literature are either incorrect or incomplete in treating this problem.

Click here to read this post out
ID: 815011; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: