×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12801v1 Announce Type: new
Abstract: We study to what extent the unique observation of $\Lambda\Lambda$ hypernuclei by their weak decay into known $\Lambda$ hypernuclei, with lifetimes of order 10$^{-10}$ s, rules out the existence of a deeply bound doubly-strange (${\cal S}$=$-$2) $H$ dibaryon. Treating ${_{\Lambda\Lambda}^{~~6}}{\rm He}$ (the Nagara emulsion event) in a realistic $\Lambda-\Lambda-{^4}$He three-body model, we find that the ${_{\Lambda\Lambda}^{~~6}}{\rm He}\to H + {^4{\rm He}}$ strong-interaction lifetime increases beyond 10$^{-10}$ s for $m_H < m_{\Lambda}+m_n$, about 176 MeV below the $\Lambda\Lambda$ threshold, so that such a deeply bound $H$ is not in conflict with hypernuclear data. Constrained by $\Lambda$ hypernuclear $\Delta{\cal S}$=1 nonmesonic weak-interaction decay rates, we evaluate the $\Delta{\cal S}$=2 $H\to nn$ weak-decay lifetime of $H$ in the mass range $2m_n \lesssim m_H < m_{\Lambda}+m_n$. The resulting $H$ lifetime is of order 10$^4$ s, many orders of magnitude shorter than required to qualify for a dark-matter candidate. A lower-mass absolutely stable $H$, $m_H\lesssim 2m_n$, is likely to be ruled out by established limits of nuclear stability such as for $^{16}$O.

Click here to read this post out
ID: 815738; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: