×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.12485v2 Announce Type: replace-cross
Abstract: The quenching of light and heavy flavor hadrons in relativistic heavy-ion collisions probes the color and flavor dependences of parton energy loss through a color-deconfined quark-gluon plasma (QGP), and thus reveals the properties of QCD matter at extremely high density and temperature. By combining a next-to-leading order perturbative QCD calculation of parton production, a general ansatz of parton energy loss functions and parton fragmentation functions, we calculate the nuclear modification of various hadron species -- charged hadrons, $D$ mesons and $B$-decayed $J/\psi$ -- over a wide transverse momentum regime. Comparing our calculations to the experimental data using the Bayesian statistical analysis, we perform a first simultaneous extraction of the energy loss functions of gluons ($g$), light quarks ($q$), charm quarks ($c$) and bottom quarks ($b$) inside the QGP. We find that the average parton energy loss at high energies follows the expected hierarchy of $\langle \Delta E_g \rangle > \langle \Delta E_q \rangle \sim \langle \Delta E_c \rangle > \langle \Delta E_b \rangle$, while the parton energy loss distribution can further test the QCD calculations of parton interaction with the dense nuclear matter. We also find that the reduction of experimental uncertainties can significantly improve the precision of the extracted parton energy loss functions inside the QGP.

Click here to read this post out
ID: 815753; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: