×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.12889v1 Announce Type: new
Abstract: A dataset with two labels is linearly separable if it can be split into its two classes with a hyperplane. This inflicts a curse on some statistical tools (such as logistic regression) but forms a blessing for others (e.g. support vector machines). Recently, the following question has regained interest: What is the probability that the data are linearly separable?
We provide a formula for the probability of linear separability for Gaussian features and labels depending only on one marginal of the features (as in generalized linear models). In this setting, we derive an upper bound that complements the recent result by Hayakawa, Lyons, and Oberhauser [2023], and a sharp upper bound for sign-flip noise.
To prove our results, we exploit that this probability can be expressed as a sum of the intrinsic volumes of a polyhedral cone of the form $\text{span}\{v\}\oplus[0,\infty)^n$, as shown in Cand\`es and Sur [2020]. After providing the inequality description for this cone, and an algorithm to project onto it, we calculate its intrinsic volumes. In doing so, we encounter Youden's demon problem, for which we provide a formula following Kabluchko and Zaporozhets [2020]. The key insight of this work is the following: The number of correctly labeled observations in the data affects the structure of this polyhedral cone, allowing the translation of insights from geometry into statistics.

Click here to read this post out
ID: 815967; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 22, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: