×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13145v1 Announce Type: new
Abstract: We present a hidden Markov model (HMM) for discovering stellar flares in light curve data of stars. HMMs provide a framework to model time series data that are not stationary; they allow for systems to be in different states at different times and consider the probabilities that describe the switching dynamics between states. In the context of stellar flares discovery, we exploit the HMM framework by allowing the light curve of a star to be in one of three states at any given time step: Quiet, Firing, or Decaying. This three state HMM formulation is designed to enable straightforward identification of stellar flares, their duration, and associated uncertainty. This is crucial for estimating the flare's energy, and is useful for studies of stellar flare energy distributions. We combine our HMM with a celerite model that accounts for quasi periodic stellar oscillations. Through an injection recovery experiment, we demonstrate and evaluate the ability of our method to detect and characterize flares in stellar time series. We also show that the proposed HMM flags fainter and lower energy flares more easily than traditional sigma clipping methods. Lastly, we visually demonstrate that simultaneously conducting detrending and flare detection can mitigate biased estimations arising in multistage modelling approaches. Thus, this method paves a new way to calculating stellar flare energy. We conclude with an example application to one star observed by TESS, showing how the HMM compares with sigma clipping when using real data.

Click here to read this post out
ID: 816255; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: