×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13826v1 Announce Type: new
Abstract: The Jupiter-Saturn chaotic excitation (JSCE) scenario proposes that the protoplanetary disk was dynamically excited and depleted beyond ~1-1.5 au in a few Myr, offering a new and plausible explanation for several observed properties of the inner solar system. Here, we expanded our previous work by conducting a comprehensive analysis of 37 optimal terrestrial planet systems obtained in the context of the JSCE scenario. Each optimal system harbored exactly four terrestrial planets analogs to Mercury, Venus, Earth, and Mars. We further investigated water delivery, feeding zones, and accretion history for the planet analogs, which allowed us to better constrain the water distribution in the disk. The main findings of this work are as follows: 1) the formation of four terrestrial planets with orbits and masses similar to those observed in our solar system in most of our sample, as evidenced by the dynamically colder and hotter orbits of Venus-Earth and Mercury-Mars analogs, and the high success rates of similar mutual orbital separations (~40-85%) and mass ratios of the planets (~70-90%) among the 37 systems; and 2) water was delivered to all terrestrial planets during their formation through the accretion of water-bearing disk objects from beyond ~1-1.5 au. The achievement of Earth's estimated bulk water content required the disk to contain sufficient water mass distributed within those objects initially. This requirement implies that Mercury, Venus, and Mars acquired water similar to the amount on Earth during their formation. Several of our planet analogs also matched additional constraints, such as the timing of Moon formation by a giant impact, Earth's late accretion mass and composition, and Mars's formation timescale.

Click here to read this post out
ID: 816290; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: