×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14283v1 Announce Type: new
Abstract: Chromatic break and/or plateau observed in the early optical and X-ray afterglow lightcurves challenge the conventional external shock models of gamma-ray bursts (GRBs). Detection of TeV gamma-ray afterglows indicates strong gamma-ray production within the afterglow jets. We investigate the cascade radiations of the $e^\pm$ production via the $\gamma\gamma$ interaction in the jets. Our numerical calculations show that the cascade synchrotron emission can make a significant contribution to the early optical/X-ray afterglows. The combination of the primary and cascade emission fluxes can shape a chromatic break and/or plateau in the early optical/X-ray lightcurves, depending on the jet properties. Applying our model to GRBs 050801 and 080310, we found that their optical plateaus and the late X-ray/optical lightcurves can be explained with our model in reasonable parameter values. We suggest that such a chromatic optical plateau could be a signature of strong $e^\pm$ production in GRB afterglow jets. The TeV gamma-ray flux of such kind GRBs should be significantly reduced, hence tends to be detectable for those GRBs that have a single power-law decaying optical afterglow lightcurve.

Click here to read this post out
ID: 816317; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: