×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14359v1 Announce Type: new
Abstract: There are several methods for indirectly detecting exoplanets, such as transit, radial velocity, astrometry, and the conventional gravitational microlensing approach. These methods rely on observing the effects of exoplanets on the emission or motion of observed stars. All these techniques have focused on the optical or infrared domains. However, an alternative method for exoplanet detection via microlensing events involves planets orbiting the source star, creating a binary source system. In this study, we explore a novel approach to detecting and studying exoplanets exclusively through their radio emissions resulting from magnetospheric processes. We propose utilizing the Roman telescope as a survey observer to detect microlensing events. Subsequently, we investigate the potential for detecting planetary radio signals through follow-up observations of these microlensing events in the radio band using the SKA telescope. This method is viable due to the comparable radio emission levels of exoplanets and their parent stars, unlike optical and infrared emissions. We conduct a Monte Carlo simulation to replicate the observations by the Nancy Roman Telescope, followed by a follow-up observation in radio frequencies using the SKA telescope. We determine that approximately 1155 exoplanets exhibit detectable signals by the SKA telescope during the 7-season observations by the Nancy Roman Telescope. This result indicates that such a method cannot only facilitate the direct detection of exoplanets but also enable the measurement of their magnetic field strength through analysis of their radio emissions.

Click here to read this post out
ID: 816325; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: