×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14377v1 Announce Type: new
Abstract: Numerous numerical studies have been carried out in recent years that simulate different aspects of exoplanets' magnetosphere and stellar winds. These studies have focused primarily on hot Jupiters with sun-like stars. This study addresses the challenges inherent in utilizing existing MHD codes to model hot Jupiter-star systems. Due to the scaling of the system and the assumption of a uniformly flowing stellar wind at the outer boundary of the simulation, MHD codes necessitate a minimum distance of greater than 0.4 au for a Jupiter-like planet orbiting a sun-like star to avoid substantial violations of the code's assumptions. Additionally, employing the GAMERA (Grid Agnostic MHD for Extended Research Applications) MHD code, we simulate star-planet interactions considering various stellar types (Sun-like and M Dwarf stars) with both Jupiter-like and Earth-like planets positioned at varying orbital distances. Furthermore, we explore the impact of tidal locking on the total power within the magnetosphere-ionosphere systems.

Click here to read this post out
ID: 816327; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: