×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2305.01256v2 Announce Type: replace
Abstract: We present an innovative approach to constraining the non-cold dark matter model using a convolutional neural network (CNN). We perform a suite of hydrodynamic simulations with varying dark matter particle masses and generate mock 21cm radio intensity maps to trace the dark matter distribution. Our proposed method complements the traditional power spectrum analysis. We compare our CNN classification results with those from the power spectrum of the differential brightness temperature map of 21cm radiation, and find that the CNN outperforms the latter. Moreover, we investigate the impact of baryonic physics on the dark matter model constraint, including star formation, self-shielding of HI gas, and UV background model. We find that these effects may introduce some contamination in the dark matter constraint, but they are insignificant when compared to the realistic system noise of the SKA instruments.

Click here to read this post out
ID: 816345; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: