×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13055v1 Announce Type: new
Abstract: This study proposes a new analytical model for grain boundary pinning by second phase particles in two-dimensional polycrystals. This approach not only considers how particles impede grain growth, but also elucidates their role in preventing grain disappearance, thereby leading to stabilised microstructures characterised by heterogeneous grain size distribution comprising a mixture of small and large grains. By quantifying the number of particles intercepted by grain boundaries during grain growth or shrinkage, we are able to calculate the respective sizes and fractions of large and small grains. Furthermore, we identify ranges of particle surface fractions and particle sizes that maximise the heterogeneity in grain size. Additionally, we demonstrate the significant influence of initial grain size on the limiting grain size in pinned microstructures. Our analytical model's results are compared with those obtained from full-field level-set simulations conducted in this study and from phase-field calculations reported in the literature, revealing very good agreement. Finally, the differences between the proposed model and existing ones in the literature are discussed.

Click here to read this post out
ID: 816396; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: