×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13396v1 Announce Type: new
Abstract: Chirality in solid-state materials has sparked significant interest due to potential applications of topologically-protected chiral states in next-generation information technology. The electrical magneto-chiral effect (eMChE), arising from relativistic spin-orbit interactions, shows great promise for developing chiral materials and devices for electronic integration. Here we demonstrate an angle-resolved eMChE in an A-B-C-C type atomic-layer superlattice lacking time and space inversion symmetry. We observe non-superimposable enantiomers of left-handed and right-handed tilted uniaxial magnetic anisotropy as the sample rotates under static fields, with the tilting angle reaching a striking 45 degree. Magnetic force microscopy and atomistic simulations correlate the tilt to the emergence and evolution of chiral spin textures. The Dzyaloshinskii-Moriya interaction lock effect in competition with Zeeman effect is demonstrated to be responsible for the angle-resolved eMChE. Our findings open up a new horizon for engineering angle-resolved magneto-chiral anisotropy, shedding light on the development of novel angle-resolved sensing or writing techniques in chiral spintronics.

Click here to read this post out
ID: 816423; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: