×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13405v1 Announce Type: new
Abstract: Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here, we determine an effective solution to overcome this challenge by simultaneously leveraging both a planar Hall effect (PHE) and an orbital Hall effect (OHE). Using a representative Co/PtGd/Mo trilayer SOT device, we demonstrate that the PHE of Co is enhanced by the interfacial coupling of Co/PtGd, giving rise to a finite out-of-plane damping-like torque within the Co layer. Simultaneously, the OHE in Mo layer induces a strong out-of-plane orbital current, significantly amplifying the in-plane damping-like torque through orbital-to-spin conversion. While either the PHE or OHE alone proves insufficient for reversing the perpendicular magnetization of Co, their collaborative action enables high-efficiency field-free deterministic switching. Our work provides a straightforward strategy to realize high-speed and low-power spintronics.

Click here to read this post out
ID: 816426; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: