×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.04359v2 Announce Type: replace
Abstract: The nature of particle and entropy flow between two superfluids is often understood in terms of reversible flow carried by an entropy-free, macroscopic wavefunction. While this wavefunction is responsible for many intriguing properties of superfluids and superconductors, its interplay with excitations in non-equilibrium situations is less understood. Here, we observe large concurrent flows of both particles and entropy through a ballistic channel connecting two strongly interacting fermionic superfluids. Both currents respond nonlinearly to chemical potential and temperature biases. We find that the entropy transported per particle is much larger than the prediction of superfluid hydrodynamics in the linear regime and largely independent of changes in the channel's geometry. In contrast, the timescales of advective and diffusive entropy transport vary significantly with the channel geometry. In our setting, superfluidity counterintuitively increases the speed of entropy transport. Moreover, we develop a phenomenological model describing the nonlinear dynamics within the framework of generalised gradient dynamics. Our approach for measuring entropy currents may help elucidate mechanisms of heat transfer in superfluids and superconducting devices.

Click here to read this post out
ID: 816540; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: