×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13135v1 Announce Type: new
Abstract: Soft growing vine robots show great potential for navigation and decontamination tasks in the nuclear industry. This paper introduces a novel hybrid continuum-eversion robot designed to address certain challenges in relation to navigating and operating within pipe networks and enclosed remote vessels. The hybrid robot combines the flexibility of a soft eversion robot with the precision of a continuum robot at its tip, allowing for controlled steering and movement in hard to access and/or complex environments. The design enables the delivery of sensors, liquids, and aerosols to remote areas, supporting remote decontamination activities. This paper outlines the design and construction of the robot and the methods by which it achieves selective steering. We also include a comprehensive review of current related work in eversion robotics, as well as other steering devices and actuators currently under research, which underpin this novel active steering approach. This is followed by an experimental evaluation that demonstrates the robot's real-world capabilities in delivering liquids and aerosols to remote locations. The experiments reveal successful outcomes, with over 95% success in precision spraying tests. The paper concludes by discussing future work alongside limitations in the current design, ultimately showcasing its potential as a solution for remote decontamination operations in the nuclear industry.

Click here to read this post out
ID: 816622; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: