×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13193v1 Announce Type: new
Abstract: This work generalizes the binary search problem to a $d$-dimensional domain $S_1\times\cdots\times S_d$, where $S_i=\{0, 1, \ldots,n_i-1\}$ and $d\geq 1$, in the following way. Given $(t_1,\ldots,t_d)$, the target element to be found, the result of a comparison of a selected element $(x_1,\ldots,x_d)$ is the sequence of inequalities each stating that either $t_i < x_i$ or $t_i>x_i$, for $i\in\{1,\ldots,d\}$, for which at least one is correct, and the algorithm does not know the coordinate $i$ on which the correct direction to the target is given. Among other cases, we show asymptotically almost matching lower and upper bounds of the query complexity to be in $\Omega(n^{d-1}/d)$ and $O(n^d)$ for the case of $n_i=n$. In particular, for fixed $d$ these bounds asymptotically do match. This problem is equivalent to the classical binary search in case of one dimension and shows interesting differences for higher dimensions. For example, if one would impose that each of the $d$ inequalities is correct, then the search can be completed in $\log_2\max\{n_1,\ldots,n_d\}$ queries. In an intermediate model when the algorithm knows which one of the inequalities is correct the sufficient number of queries is $\log_2(n_1\cdot\ldots\cdot n_d)$. The latter follows from a graph search model proposed by Emamjomeh-Zadeh et al. [STOC 2016].

Click here to read this post out
ID: 816644; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: