×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13216v1 Announce Type: new
Abstract: In this article, we propose an accuracy-assuring technique for finding a solution for unsymmetric linear systems. Such problems are related to different areas such as image processing, computer vision, and computational fluid dynamics. Parallel implementation of Krylov subspace methods speeds up finding approximate solutions for linear systems. In this context, the refined approach in pipelined BiCGStab enhances scalability on distributed memory machines, yielding to substantial speed improvements compared to the standard BiCGStab method. However, it's worth noting that the pipelined BiCGStab algorithm sacrifices some accuracy, which is stabilized with the residual replacement technique. This paper aims to address this issue by employing the ExBLAS-based reproducible approach. We validate the idea on a set of matrices from the SuiteSparse Matrix Collection.

Click here to read this post out
ID: 816652; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: