×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13223v1 Announce Type: new
Abstract: A direct solver is introduced for solving overdetermined linear systems involving nonuniform discrete Fourier transform matrices. Such a matrices can be transformed into a Cauchy-like form that has hierarchical low rank structure. The rank structure of this matrix is explained, and it is shown that the ranks of the relevant submatrices grow only logarithmically with the number of columns of the matrix. A fast rank-structured hierarchical approximation method based on this analysis is developed, along with a hierarchical least-squares solver for these and related systems. This result is a direct method for inverting nonuniform discrete transforms with a complexity that is nearly linear with respect to the degrees of freedom in the problem. This solver is benchmarked against various iterative and direct solvers in the setting of inverting the one-dimensional type-II (or forward) transform,for a range of condition numbers and problem sizes (up to $4\times 10^6$ by $2\times 10^6$). These experiments demonstrate that this method is especially useful for large ill-conditioned problems with multiple right-hand sides.

Click here to read this post out
ID: 816657; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: