×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13224v1 Announce Type: new
Abstract: Machine-learning models, which are known to accurately predict patterns from large datasets, are crucial in decision making. Consequently, counterfactual explanations-methods explaining predictions by introducing input perturbations-have become prominent. These perturbations often suggest ways to alter the predictions, leading to actionable recommendations. However, the current techniques require resolving the optimization problems for each input change, rendering them computationally expensive. In addition, traditional encoding methods inadequately address the perturbations of categorical variables in tabular data. Thus, this study propose FastDCFlow, an efficient counterfactual explanation method using normalizing flows. The proposed method captures complex data distributions, learns meaningful latent spaces that retain proximity, and improves predictions. For categorical variables, we employed TargetEncoding, which respects ordinal relationships and includes perturbation costs. The proposed method outperformed existing methods in multiple metrics, striking a balance between trade offs for counterfactual explanations. The source code is available in the following repository: https://github.com/sumugit/FastDCFlow.

Click here to read this post out
ID: 816658; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: